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The aim of the paper was to recognize the influence of mechanical factors on the movement of
the leaflets. Mechanical stimuli may have a positive effect on remodeling the leaflet material
to adapt its structure to a changing load. A model of the valve functioning process was
developed. A geometric model similar to the construction of a natural valve was adopted. The
hybrid process of the liquid-solid interaction problem was described. The interaction process
was modeled. The problem was formulated with the Galerkin FEM method. Numerical
analyses of a single valve work cycle and the calcification process of aortic valve bioprostheses
were performed.
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1. Introduction

The subject of this study is the aortic valve located at the outflow of the left ventricle. It is
made of three spherical leaflets connected by a fibrous ring. The valve leaflet has a composite-
-layered structure. The orthogonal arrangement of fibers in the layers determines their or-
thotropic properties. The majority of fibers are arranged in the distinguished radial and cir-
cumferential directions. Geometry of individual fibers is the reason that the material shows
strongly nonlinear elastic properties. The external layers are a mechanism responsible for trans-
ferring loads to other structures during the valve work cycle (Borkowska et al., 2017). During
aortic valve functioning, the material undergoes large deformations, reaching up to sixty percent
(Ghista and Reul, 1983; Bosi et al., 2018).
The aim of the study was to recognize the influence of mechanical factors on the functioning

of the aortic valve. The developed model of the valve functioning allows one to simulate not
only the physiological state of the valve but also disease states of the valve leaflet, and thus the
disfunction of the entire organ (Chiyoya et al., 2018; Sellaro, 1997; Arzani and Mofrad, 2017).
To model the issue of dynamic flow through the aortic valve, the numerical FEM method

was used in the Galerkin formulation. The studied process is a classic issue of the interaction
between a fluid and structure (Fluid-Structure Interaction – FSI). In this process, we observe
deformations of the shell of the leaflet caused by the flowing liquid, and disturbances of the
flow caused by the opening valve (de Hart et al., 2003; Su et al., 2014). The method Arbitrary
Lagrangian-Eulerian (ALE) was used. This algorithm requires modification due to the use of
two different motion descriptions for the fluid and structure as well as large deformations of the
leaflet, which is observed (Gnyaneshwar et al., 2002; Sodhani et al., 2018; Joda et al., 2016).

2. Modeling of the aortic valve functioning process

The subject of the research is a material body composed of two continuous areas: the fluid
area Ωf bounded by the edge Γf and the area of the solid body (structure) Ωs bounded by the
edge Γs. Both areas are connected by a border Γ , an interface between these areas (Fig. 1).
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Fig. 1. Analyzed material body

The boundary Γf = Γin∪Γout∪Γw∪Γsym is composed of three sub-boundaries: Γin and Γout
are respectively the inlet and outlet of the fluid through the valve, Γw is the boundary of
adherence of the fluid to the aorta, and the Γsym is the boundary condition of symmetry of the
analyzed problem.

The model of the valve functioning process was formulated by assumptions:

• the material of the Ωs area (valve leaflet) is an elastic, homogeneous or orthotropic-fibrous
composite body,

• the area of Ωs is a shell of constant or variable thickness,

• the Ωs area on the edge Γs is rigidly attached to the aorta,

• the area Ωf is a Newtonian or non-Newtonian fluid,

• on the edge of Γin and Γout, kinetic boundary conditions (fluid pressure) or kinematic
boundary conditions (fluid velocity) are set.

The issue was formulated by writing equations describing the behavior of individual subareas
of the fluid and solid as well as the interface surface connecting these two areas. In the model
of the fluid area Ωf , the equation of motion takes the form

ρf
dvf

dt
= ∇ · σf + ff (2.1)

where vf (x̂
i, t) is the vector of velocity, σf is the Cauchy stress tensor, ff is the body force.

By saving the material derivative of the fluid velocity with respect to the spatial coordinate
system {χi}, equation (2.1) can be written in the form

ρf

(∂vf
∂t
+ (vf − v̂) · ∇vf

)
= ∇ · σf (2.2)

where vf is the local velocity of the system {χ
i} moving relative to the fixed spatial coordinate

system {xi}. It is assumed that the fluid is an incompressible medium, in which case the principle
of mass conservation and constitutive equations take the form

∇ · vf = 0 σf = −pfI+ τ f = −pfI+
1

2
µ(∇vf + vf∇) (2.3)

where µ is the viscosity coefficient, τ f is the deviator of the stress tensor, pf is isotropic fluid
pressure.

In the model of the solid area Ωs, the equation of equilibrium takes form

∇ · σs + fs = 0 (2.4)

where σs is the Cauchy stress tensor, fs is the body force.
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For an incompressible body, the mass conservation equation is in the form

det(F)− 1 = 0 (2.5)

where F = ∇x is the deformation gradient.
The constitutive relation for the incompressible elastic body will be written in the form

σs = −psI+ τ s (2.6)

where τ s is the deviator of the stress tensor, ps is isotropic pressure. Further considerations were
made assuming no presence of body forces in the areas Ωf and Ωs.
In the interface model Γ , on the surface connecting the Ωf and Ωs areas, the velocity of

fluid and solid particles are equal, hence for the points lying on Γ , the condition must be met

vf = vs (2.7)

The local formulation of the interaction issue can be called a system of equations (2.2)-(2.5)
and (2.7) together with definitions (2.6) and appropriate boundary and initial conditions.

3. Hybrid description of the fluid-solid interaction problem

From the mechanical point of view, the process analyzed is the interaction between the fluid
and structure. In this process, the interaction of two different media is observed: solid and fluid,
which model the aortic valve and blood, respectively. Within the framework of mechanics to
describe the movement, different Lagrange’s and Euler’s descriptions are used.
The Lagrange description is used in solid matter problems. The functions of the condition of

the material body, in particular motion, deformation and stress state, are functions of material
coordinates {X1,X2,X3} and time t. These functions are related to material points that change
their position relative to spatial coordinates during motion {x1, x2, x3}. Usually, the spatial
coordinate system is assumed to be unchangeable over time.
The material derivative with aspect to time of any scalar function Φ(X1,X2,X3, t) will be

saved in the form

dφ

dt
=
∂φ(X1,X2,X3)

∂t
(3.1)

Euler’s description is used to describe the issues of fluid mechanics. In this case, the functions of
the center state are spatial coordinate functions {x1, x2, x3} and time t. The material derivative
on any scalar function Φ(x1, x2, x3, t) is described in the form

dφ

dt
=
∂φ(x1, x2, x3, t)

∂t
+ v1

∂φ

∂x1
+ v2

∂φ

∂x2
+ v3

∂φ

∂x3
(3.2)

where {vi} is a velocity vector.
The material derivative in the Euler description is the sum of the partial time derivative

and the convective derivative, where (v1, v2, v3) it is the vector of the fluid velocity at the point
{x1, x2, x3}.
Let us assume that in the interaction problem, for the solid body occupying the Ωs area,

the Lagrange description is used, and the Euler description is used for the fluid occupying the
Ωf area. In this case, some duality occurs when formulating the boundary conditions on the
common boundary Γ . Points on the edge Γ simultaneously belong to the area of the solid body
and the fluid area. In the analytical formulation of conditions for the continuity of kinematic and
kinetic fields, the dualism of the formulation does not pose major problems, whereas a significant
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problem occurs with the use of FEM, in particular when selecting a discrete model. The geometry
of the finite element in the Ωs area is immutable relative to the material coordinate system
{X1,X2,X3}, whereas geometry of the finite element in the area Ωf is not variable relative to
the spatial arrangement {x1, x2, x3}. In this case, the movement of the edge Γ relative to the
spatial layout leads to discontinuities of the discrete model on the edge Γ .
One way out of this situation is to use the ALE algorithm. The idea behind this algorithm is

to introduce a new spatial coordinate system {x̂1, x̂2, x̂3} that is a fluid reference configuration.
It is assumed that the new coordinate system is associated with the spatial coordinate system
{x1, x2, x3} with the transforming compound

x̂ = χ(x, t) (3.3)

The coordinate system {x̂i} is unstable, wherein the change is coupled with the interface
motion between the fluid and the solid moving in the fluid. In particular, at the edge Γ , the
velocity of the material points of the solid body with respect to the coordinate system {x̂i} is
zero. Then the grid of discrete models of the fluid and solid on the interface will be continuous
if the finite element in the fluid area will be unchanging with respect to the system {x̂i}, and in
the initial moment these meshes will have common nodes on Γ .
We consider the motion of the material point P (Fig. 2) with respect to the spatial coordinate

system {xi} in the time interval (t, t+∆t). The location of the point changes according to the
dependence

x(t)→ x(t+∆t) = x(t) +∆x (3.4)

Fig. 2. Kinematic relations for the point P in a spatial system in relation to two reference
systems {xi} and {x̂i}

However, if the equation of motion is stored in the moving system {x̂i}, then the change in
the position of the P point will be given by the dependence

x̂(t)→ x̂(t+∆t) = x̂(t) + (∆x−∆x̂) (3.5)

where ∆x̂ is the shift of the coordinate system {x̂i} relative to {xi} at the time ∆t.
Considering the above dependencies, the material derivative of the state function φ(x̂, t) of

the material particle P stored in the reference system {x̂i} is equal to

dφ

dt
=
∂φ(χ1, χ2, χ3, t)

∂t
+ (v1 − v̂1)

∂φ

∂x1
+ (v2 − v̂2)

∂φ

∂x2
+ (v3 − v̂3)

∂φ

∂x3
(3.6)

where (vi − v̂i) is the difference in velocity of the material point and the speed of movement
of the reference system {x̂i} relative to {xi}. In the ALE method, the fluid problem is defined
relative to the reference system {x̂i}.
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Due to the large leaflet deformation, the ALE algorithm found in commercial codes requires
inclusion of the remeshing procedure to redefine the discrete fluid model. Approximation of
nodal parameters in subsequent iterations is necessary, which means that the final parameter
values have little accuracy (de Hart et al., 2003). In paper (Chen and Luo, 2018), the immersed
boundary method was used. The method is based on decomposition of the computational domain
and also requires mesh repair processes. Simulation was able to capture both realistic deformation
and structures in the flow, however, we observe a symmetrical process of leaflet buckling, which
does not occur in a natural process.

4. Formulation of the problem with the weighted residue method

The local formulation described above can be presented in an equivalent form of weak formula-
tion. One of the most general weak formulations is the weighted residue method, which is shown
below.

In the area Ω = Ωf ∪Ωs, the weight functions were selected

φαi(x) ∈ Φα i = 1, 2, 3, . . . α = f, s set of linearly independent scalar functions,

ψαj(x) ∈ Ψα j = 1, 2, 3, . . . α = f, s set of linearly independent scalar functions.

The weight functions were selected in the interface area

θk(x) ∈ Θ k = 1, 2, 3, . . . set of linearly independent scalar functions.

The following definitions of matrix weight functions are accepted

ϕαi = φαiI3 i = 1, 2, 3 . . . α = f, s θk = θkI3 k = 1, 2, 3 . . .

where I3 is the unit matrix of dimension 3.

The weight functions form the complete base of the respective function spaces. Then, the
formulation of local issues of interaction with the given system of equations can be replaced with
an equivalent system of residual form equations

∫

Ωf

ϕfi ·
(
ρf
∂vf

∂t
+ (vf − v̂) · ∇vf −∇ · σf − ff

)
dΩ +

∫

Γ

ϕfi · λ dΓ = 0 ∀φfi ∈ Φ

∫

Ωf

ψfj(∇ · vf ) dΩ = 0 ∀ψfj ∈ Ψ

∫

Ωs

ϕsi · (∇ · σ + fs) dΩ −

∫

Γ

ϕsi · λ dΓ = 0 ∀φsi ∈ Φ

∫

Ωs

ψsj(det(F)− 1) dΩ = 0 ∀ψsj ∈ Ψ

∫

Γ

θk · (vf − vs) dΓ = 0 ∀θk ∈ Θ

(4.1)

Equations (4.1)1 and (4.1)3 have been introduced into the integral component, in which
there is a vector function λ, which is interpreted as a Lagrange multiplier. This multiplier has
a physical interpretation. Equations (4.1)1 and (4.1)3 express the weight residual of the failure
of the global equation of equilibrium in the areas Ωf and Ωs, respectively. The boundary is
a particular limitation of these areas – it has a variable location and, in addition, the loading
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of this edge results directly from the interaction of the adjacent areas. Equation (4.1)5 only
provides for the compatibility of displacements of the corresponding points of the area to Γ ,
while it does not ensure that the mutual interactions of the areas overlap. Let pf and ps denote
intensities of the internal edge force (stress vector) loading the Ωf and Ωs areas on the edge,
respectively. Due to the continuity of areas on the Γ edge, the difference

λ = pf − ps (4.2)

should be equal to zero. Because condition (4.1)5 does not ensure that this condition is met,
then it should be forced by adding additional components to equations (4.1)1 and (4.1)3. These
integrals are the resultants of unbalance boundary forces applied to theΩf and Ωs areas analyzed
as separated sub-areas of the Ω area.
The integration was performed by parts of equation component (4.1)1
∫

Ωf

ϕfi · (∇ · σf ) dΩ =

∫

Γf

ϕfi · tf dΓ −

∫

Ωf

(∇ϕfi)
T : σf dΩ (4.3)

Analogous operation can be performed on the component
∫

Ωs

ϕsi · (∇ · σ) dΩ from equation

(4.1)3. Finally, a new system of equations is obtained instead of a system of equations (4.1)
∫

Ωf

ϕfi ·
(
lρf

∂vf

∂t
+ (vf − v̂) · ∇vf

)
dΩ +

∫

Ωf

(∇ϕfi)
T : σf dΩ +

∫

Γ

ϕfi · λ dΓ

=

∫

Ωf

ϕfi · ff dΩ +

∫

Γf

ϕfi · tf dΓ

∫

Ωf

ψfj(∇ · vf ) dΩ = 0

∫

Ωs

(∇ϕsi)
T : σs dΩ +

∫

Γ

ϕsi · λ dΓ =

∫

Ωs

ϕsi · fs dΩ +

∫

Γs

ϕsi · ts dΓ

∫

Ωs

ψsj(det(F)− 1) dΩ = 0

∫

Γ

θk · (vf − vs) dΓ = 0

(4.4)

The system of equations contains at most the first derivatives of the state function relative
to geometric variables, which is important in construction of the FEM algorithm. The issue was
formulated in terms of FEM in the Galerkin version.

5. Solution of FEM equation by an increment-iterative method

In order to solve the problem, a generally accepted strategy is adopted, based on formulation
of an increment-iterative algorithm for solving the problem in geometric and temporal space. In
particular:

a) Solutions are searched in the time interval (0, T ) by dividing this interval into
equal sections of ∆t. These segments determine on the time axis the time moments
t0, t1, t2, . . . , tn, tn+1, . . ., where tn+1 − tn = ∆t = const

b) The solution consists of a sequence of solutions on individual sections of time. The starting
point for the time segment (tn, tn+1) is the moment tn in which the system has reached
the dynamic equilibrium, and the vector of nodal parameters is equal qn = q(tn) and the
vector Fn = F(tn). Next, a solution is looked for at the moment tn+1 by finding a vector
of nodal parameters qn+1 = q(tn+1).
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The algorithm for solving the equation by the weighted residual method is presented below.
At the time interval 〈tn, tn+1〉, the parameter vector is interpolated with the dependency

q(τ) ≈ q̂(τ) = qn +
τ

∆t
(qn+1 − qn) where τ = t− tn (5.1)

The above interpolation is consistent with the standard linear FEM interpolation, which can be
formulated as

q̂(τ) = Nnqn +Nn+1qn+1 =
(
1 +

τ

∆t

)
qn +

( τ
∆t

)
qn+1 (5.2)

Substituting (1.32) to (1.28) and calling for resetting of the weighted residuum (weighted error),
we have

∆t∫

0

W
(
C ˙̂q(t) +Kq̂(t)−F(t)

)
dτ = 0 (5.3)

where W (τ) is a weight function. If enter the weight parameter

θ =
1

∆t

∫ ∆t

0
Wτ dτ

∫ ∆t

0
W dτ

(5.4)

then the equation can be written in the form

C(qn+1 − qn)

∆t
+K
(
qn + θ(qn+1 − qn)

)
+ F = 0 (5.5)

where F is the weighted average size over a period of time. We finally obtain

qn+1 = (C+∆tθK)
−1{[C −∆t(1− θ)K]qn − F} (5.6)

This scheme depends on the choice of the weight function. The above mentioned problem
solving scheme is a first order diagram and gives a numerical error of the order of 0(∆t).

6. FEM algorithm for dynamic analysis of aortic valve functioning

The following is a detailed FEM algorithm used to analyze the valve functioning process. The
fluid involved in the process is treated as a Newtonian fluid. The fluid flow through the valve is
disturbed by changes in the pressure conditions at the inlet and outlet of the aortic duct, the
action of the valve leaflet, and deformation of the aortic wall. In the valve operation process, two
areas of the structure and fluid interact with each other. In this work, full mutual interaction
between the areas is considered. When formulating the FEM algorithm, the dynamic analysis
of the aortic valve used an independent Lagrange and Euler (ALE) description for the structure
and fluid area, respectively. An important element of the ALE method is proper adaptation
of the discrete FEM model in the fluid area to the time varying position of the discrete FEM
structure model. In the case of large displacements, the ALE method leads to degeneration of
the mesh, hence the need to modify it. A modified version called ALE-MA was used.
The algorithm for solving the problem of dynamic valve analysis is presented in the form of

a block diagram shown in Fig. 3.
In the background of the research, the most suitable geometric valve model was sought. Due

to proportions of dimensions, the Reul model (Cacciola et al., 2000) was adopted, which seems
to be the closest to the natural valve shape.
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Fig. 3. Fluid-Structure Interaction algorithm

The geometric shape of the aortic valve leaflet has been developed on the basis of measure-
ments of natural leaflets. It was assumed that the cusp is a fragment of the rotational ellipsoid
described by the equation (Fig. 4)

x2

a2x
+
y2

a2y
+
z2

a2z
= 1 (6.1)
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Fig. 4. Geometric model of the Reul valve leaflet

where

ax = ay = RL az =
RLR2 sin θ2√
R2L − (e−R)

2

Single leaflet geometries were obtained by cutting an ellipsoid with a circular cylinder with
radius equal to the aortic radius and equation

(x− e)2

R2
+
y2

R2
= 1 and plane z = 0 (6.2)

The Reul geometric model is defined by three parameters: aortic radius R, radius of the
circumferencial curvature RL and radius of the radial curvature R2. Model parameters were
selected based on measurements of the natural valve leaflets.
Assuming that the three valve cusps are identical and the aorta within the valve is a circular

cylinder, the valve is geometrically contained in the segment of the circular cylinder and has
six planes of symmetry. When performing analysis of the valve work, the symmetry properties
were used, which allowed one to limit the analysis area to a cylinder section containing only
one leaflet. Geometric data of valve model elements is shown in Fig. 5, where R is aortic radius,
la is length of the aortic tube taken as the valve component, hk is size of the cooptation (leaflets
fitting).
When analyzing the valve functioning process, the following specific assumptions are used:

a) The leaflet shell (area Ωs) is treated as a three-dimensional area with constant thickness h.
The material is treated as an isotropic hyperelastic body. A five parameter Mooney-Rivlin
model was adopted for which the elastic energy density is formulated in the form

W = c10(I1−3)+c01(I2−3)+c20(I1−3)
2+c11(I1−3)(I2−3)+c02(I2−3)

2+
1

d
(J−1) (6.3)

where I1, I2 are invariants of the right Green strain tensor, J is the determinant of the
deformation gradient, d is the material incompressibility parameter, and cij coefficients
are material constants.
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Fig. 5. Analyzed aortic valve fragment, R = 15mm, la = 45mm, hk = 3mm: (a) axonometric view of
the fragment of the valve leaflet, (b) view of the whole valve from the aortic axis side with designation

of the analyzed fragment

b) The influence of the layered and fibrous structure on the physical properties of the leaflet
material is omitted. It is assumed that the strain energy density results from the average
properties of the natural leaflet layers of the valve.

c) Blood (area Ωf ) was modeled as a Newtonian liquid characterized by density ρ and the
dynamic viscosity coefficient µ. The fluid motion is described by the Navier-Stokes equation
and the mass behavior equation

ρ
∂v

∂t
+ ρ(v∇)v = −∇p+ µ∇2v ∇v = 0 (6.4)

d) Aortic valve leaflet motion is caused by a flowing liquid whose character and flow conditions
determine time-varying functions of pressure applied to the edge of the artery Γf1.

e) Only the leaflet shell undergoes interaction with the flowing liquid, and the aortic wall
is assumed to be non-deformable. It is also assumed that in the initial configuration, the
shell is free from stresses. The initial configuration is understood as valve configurations in
the closed state at the moment when the pressure is balanced before and after the valve.
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f) The aim of the developed ALE-MA algorithm was to improve the analysis of the interaction
process by eliminating the remeshing process in the fluid area due to its deformation caused
by large displacements of the structure.

7. Numerical analysis of a single valve work cycle

The numerical analysis was performed for the area consisting of a single leaflet of the aortic valve
surrounded by a fluid. Despite the existence of the axis of symmetry in the presented model,
it was decided to analyze the whole leaflet due to the possibility of an asymmetrical form of
buckling. At the edge of the shell, appropriate boundary conditions were assumed, taking into
account symmetries of the aortic artery.

The following boundary conditions and loading conditions are adopted in numerical calcu-
lations:

a) The Γsym area is treated as a non-viscus wall on which the velocity and gradient of fluid
velocity in the normal direction to the surface is equal to zero

vy = vy = 0
∂v

∂y
= 0 on Γsym (7.1)

b) The aortic wall Γw is treated as a viscous wall on which the velocity of the fluid is equal
to zero

vx = vy = vz = 0 on Γw (7.2)

c) The leaflet on the edge Γs is rigidly attached to the aorta, which expresses the boundary
conditions in the form

ux = uy = uz = 0 on Γ (7.3)

d) The pressure field is a function of time on the inlet Γin and outlet Γout surface of the aortic
duct. The load was based on actual measurements of the heart cycle.

e) During the process, the fluid exerts pressure load over time on both ventricular and aortic
surfaces of the leaflet. The ventricular and aortic surfaces of the leaflet shell constitute
the Γ interface, which is treated as a viscous wall boundary.

f) The SST (Shear Stress Transport) algorithm was chosen to describe the turbulent flow. It
is a model based on the concept of Reynolds averaged equations (RANS).

Studies of the natural aortic valve were performed on the ultrasound (USG) measurements.
Natural valve tests were performed in a two-dimensional projection.

8. Results

The process of opening the valve model starts with the deviation of the free edge of the leaflet
towards the wall of the artery (Figs. 6a,b). Next, we observe motion of the whole shell and, in
particular, its central part towards the wall of the vessel. The process of loss of stability of the
leaflet shell begins, which in a short period of time experiences a large deformation (Figs. 6c,d).
The place of initiation of this process is located in the axis of symmetry of the shell near the
place of its attachment to the wall of the artery. As a result of full opening of the valve, the
free edge of the shell is corrugated, which in the final stage of the valve opening process takes a
shape of an arch, which is typical for natural valves.
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The flow through the valve continues until the pressure difference between the Γin surface
(ventricle) and the Γout surface (aortic artery) remain. When pressure on the surface Γin reaches
a value lower than pressure prevailing on the surface Γout, the process of closing the valve begins.
In the initial phase, a return of the free edge of the leaflet is observed towards the axis of the
artery (Fig. 6f). Then, due to the inflow of the fluid onto the outflow part (aortic) of the shell, it
buckles in the direction of the vessel axis closing the valve (Figs. 6g,h). When the valve closes,
there is a small backflow.

Fig. 6. Deformation of the leaflet model. Projection perpendicular to the plane of symmetry of the leaflet

Fig. 7. Deformation of the natural leaflet. Projection perpendicular to the plane of symmetry of the
leaflet
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Natural leaflet deformations are shown in Fig. 7. Figure 7b shows the moment of loss of
stability of the leaflet shell and of directing the free edge of the shell to the axis of the vessel.
Figure (7c-e) shows the open valve. The leaflets inclined towards the wall of the artery ensure
a correct opening field of the valve. Figure 7f shows the initial stage of the closing of the valve,
when we observe the direction of the free edge of the leaflet towards the axis of the vessel, then
buckling the leaflet and closing the valve (Figs. 7g,h).

The deformation process of the leaflet model and natural leaflet is determined by the pressure
conditions prevailing at the interface between the fluid and the structure in the fluid flow through
the valve. The configuration of deformation states is different in the process of opening and
closing of the valve. In the analysis of both objects, the moment of shell stability loss was
revealed. The process of natural leaflet deformation and the model are similar.

Analyzing the model deformation process in the projection perpendicular to the plane of the
aorta cross-section, it is observed that in the initial phase, when the free edge of the coating
deviates towards the vessel wall, the deformation state is asymmetrical (Fig. 8a). In subsequent
time periods, the deformation process and growth of the open field are symmetrized until the
circular shape is reached by the free edge of the coating (Fig. 8d). This is a characteristic
process for natural valves. The process of closing the valve model in the described projection is
characterized by gradual reduction of the opening area until the valve is completely closed.

Fig. 8. Deformation of the leaflets of the valve model. Projection perpendicular to the plane of the aorta
cross-section

The description of the opening process of the valve model presented is similar to the process
of opening the natural valve. Figure 9b shows the asymmetrically deviated free edges of the
leaflet, and then the moment of loss of stability of the shell (Fig. 9c). A progressive opening
process of the valve was observed until the opening field was reached (Figs. 9d-9f). In the case
of a natural valve, we observed a similar process (Figs. 9g-9l).

The obtained image of the native aortic valve functioning in ultrasound measurements has
been confirmed in numerical modeling. Ghista and Reul (1983) presented results of numerical
analysis of the valve model interaction process. The results concerning the deformation analysis
correspond with the results presented in this work. In vivo tests carried out by this team confirm
the convergence of deformation states configurations in which the leaflet shell undergoes with
the results presented in the paper.
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Fig. 9. Deformation of the leaflets of the natural valve. Natural projection to the plane of the cross
section of the aortic artery

The dependence of the change in the opening area of the natural valve and the model is
shown in Fig. 10. The parameter which often differs in the experiments described in the work
on aortic valve modeling work is the working time of the tested object. It consists of: time of
valve opening phase ts, period in which the valve remains open tt, closing time of the valve tz.

During the ejection of the fluid towards the ventricular surface, we observe an increasing
axial flow (Figs. 11a,b) and flow in the aorta bulb caused by the leaflets movement toward the
vessel wall (Fig. 11c). As the load increases, the progressive deformation of the leaflets increases
the opening area of the valve. Figures 11d and 11e show the state of loss of stability and the
associated intensification of flow. A central flow was observed in the axis of the aorta. The fluid
stream is separated and a vortex forms. In the further part of the artery, the flow stabilizes. At
the final stage of ejection, pressure is equalized on both sides of the valve, and then lowers on
the ventricular surface Γin below the pressure in the aorta Γout. As a result of changes in the
boundary conditions, the flow direction is reversed (Fig. 11g). The fluid flowing to the surface
of the aortic leaflet causes the feedback process of dislocating the leaflet from the configuration
after buckling to the natural configuration which, in effect, causes the valve to close (Fig. 11h).
During the closing process, a small backflow occurs (Fig. 11i).
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Fig. 10. Dependence of the change in the opening area of the natural valve • and the model ◦ as a
function of time

Fig. 11. Distribution of the velocity field

The maximum velocity obtained in the modeled process was vmax = 0.70m/s. The Reynolds
number Re for velocity vmax was 6300, and the Strouhal number St = 0.037. In the real flow, the
maximum velocity vmax = 0.82m/s was obtained, the Re = 7380, and St = 0.031.The dynamics
of the flow through the valve indicates laminar-turbulent nature of the flow. During the flow
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around the leaflet, we observed the formation of a vortex structure in the space. A similar
phenomenon was described in (Joda et al., 2016). The results are confirmed by the velocity
values obtained in the USG measurements.

9. Discussion

In (Chen and Luo, 2018), the process of deformation of the aortic leaflet model is similar to the
results obtained by the author. The similarity applies especially to the phase when the valve is
closed and discontinuities of the cusps contact are visible (Fig. 8h). However, there are doubts in
the symmetrical deformation process, which is asymmetrical in the model presented in the paper
as well as in the natural process (Fig. 9h). This is due to some imperfections in the construction
of the leaflet shell.

Chen and Luo (2018) showed the moment of leaflet buckling, which is similar to the results
of the author. The difference occurs only at the time when the buckling occurs due to different
duration of the valve work cycle. The mentioned differences in the parameters of the heomdy-
namic process and differences in the selection of the valve size had an impact on the parameters
obtained in the paper (Chen and Luo, 2018), i.e. valve opening area, which was 1.67 cm2, vol-
ume flow and flow velocity. However, similar vortex structures were observed around the leaflet
during valve opening and closing.

In papers (Gnyaneshwar et al., 2002; de Hart et al., 2003), the velocity fields were presented.
The similarity of the vortex structures flowing around the cusp shell and the central stream of
the fluid occurring during the ejection phase of the blood from the left ventricle is noticeable. In
both works, a similar average blood ejection velocity through the valve v ≃ 1m/s was recorded.

The numerical tool presented in the paper allows modeling the fluid-structure interaction
process. This algorithm enables modeling of the functioning bioprostheses. It allows one to assess
the influence of geometrical parameters of the leaflet on the hemodynamic parameters of the
entire valve. The solution allows modeling the character of the flow around the valve cusp and
analyzing the formation of stagnation zones. Within this solution, it is possible to analyze the
reasons for the development of the calcification process, which is the most destructive process
of the currently used bioprostheses.
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